Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabaşoğlu* ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.095$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Methoxyanilino)isobenzofuran-1(3H)-one

Crystals of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$, are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and two $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate an $R_{2}^{2}(12)$ ring motif and the phthalide part of the molecule is planar. The dihedral angle between the phthalide group and the benzene ring is $71.18(5)^{\circ}$.

Comment

Phthalides (isobenzofuranones) are five-membered lactones found in plants and are known to show diverse biological activities as hormones, pheromones and antibiotics (Aoki et al., 1973; Lacova, 1973; Elderfield, 1951; Tsi \& Tan, 1997). Considering the potential interest of such phthalide-3phosphonates in synthetic organic chemistry, and as agrochemical and pharmaceutical agents, we decided to investigate the solid state structures of 3 -substituted phthalides. The structure of the title compound, (I), is reported here (Fig. 1 and Table 1).

(I)

The dihedral angle between the five-membered ring and the fused six-membered ring is $0.89(7)^{\circ}$, whereas that between the benzene ring and the mean plane of the overall phthalide group is $71.18(5)^{\circ}$. The geometry of the molecule does not show any significant differences from the average geometry found for 3-(4-hydroxyanilino)isobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006).
Two inversion-related molecules of (I) are linked by N1$\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bonds (Fig. 2 and Table 2), which generate an $R_{2}^{2}(12)$ ring motif (Etter, 1990). There are no directionspecific aromatic $\pi-\pi$ interactions between adjacent rings in (I), but two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions link parallel phthalide rings (Table 2).

Experimental

The title compound was prepared as described by Odabaşoğlu \& Büyükgüngör (2006), using phthalaldehydic acid and p-methoxyaniline as starting materials (yield 95%; m.p. $416-417 \mathrm{~K}$). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Received 21 March 2006 Accepted 8 April 2006

3-Substituted phthalides, Part II.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=255.26$
Monoclinic, $P 2_{1} / c$
$a=10.5814$ (8) \AA
$b=8.1613$ (4) A
$c=15.2896$ (11) \AA
$\beta=111.656$ (5) ${ }^{\circ}$
$Z=4$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Prism, brown
$0.61 \times 0.53 \times 0.38 \mathrm{~mm}$
$V=1227.18(14) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.940, T_{\text {max }}=0.969$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$w R\left(F^{2}\right)=0.096$
$S=1.05$
2406 reflections
176 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0553 P)^{2}\right. \\
\quad+0.0742 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} 0.15 \mathrm{e}^{-3}
\end{aligned}
$$

16415 measured reflections 2406 independent reflections 1968 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.059$ $\theta_{\text {max }}=26.0^{\circ}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.2056(15)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.4022(15)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.3505(14)$	$\mathrm{C} 8-\mathrm{O} 2$	$1.4902(14)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.3771(17)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.4085(15)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.4974(16)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$121.86(11)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$112.65(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$129.60(12)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$113.32(10)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the C2-C7 and C9-C14 rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.891(15)$	$2.160(15)$	$3.0141(14)$	$160.4(12)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots C g 1^{\mathrm{ii}}$	0.98	2.66	$3.534(1)$	148
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg} 2^{\mathrm{iii}}$	0.93	3.18	$3.812(1)$	127

Symmetry codes: (i) $-x+1,-y+1,-z+1 ; \quad$ (ii) $\quad-x+1,-y,-z+1 ; \quad$ (iii)
$-x, y+\frac{1}{2},-z+\frac{1}{2}$.

All C -bound H atoms were refined using the riding model approximation with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic, $0.98 \AA$ for methine and $0.96 \AA$ for methyl H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right.$ (parent atom)]. The N -bound H atom was located in a difference Fourier map and refined freely with an isotropic displacement parameter.

Data collection: X - $A R E A$ (Stoe \& Cie, 2002); cell refinement: X - $A R E A$; data reduction: X - RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

Figure 1
A view of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Packing diagram of (I). Hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ stacking interactions are drawn as dashed lines.
graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Aoki, K., Furusho, T., Kimura, T., Satake, K. \& Funayama, S. (1973). Japanese Patent 7324724; (1974). Chem. Abstr. 80, 129-246.
Elderfield, R. C. (1951). Heterocylic Compounds, Vol. 2, ch. 2. New York: Wiley.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lacova, M. (1973). Chem. Zvesti, 27, 525-529; (1974). Chem. Abstr. 80, 59757.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tsi, D. \& Tan, B. K. H. (1997). Phytother. Res. 11, 576-582.

[^0]: © 2006 International Union of Crystallography All rights reserved

